TSQURRE DNE
 INDUSTRIES INC.

NC-930
 16 Channel PC/104 DIO Module

Reference Manual

Revised August 2004

Legal Notice

Square One Industries, Inc. provides no warranty with regard to this manual or other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to this manual or other such information. In no event shall Square One Industries, Inc. be liable for any incidental, consequential, or special damages arising out of or in connection with this manual or other information contained herein or the use thereof. Square One Industries, Inc. reserves the right to make any modification to this manual or the information contained herein at any time and without notice.
Introduction 4
1.1 General Description 4
1.2 Features 4
1.3 Applications 4
1.4 Specifications 5
Module Configuration and Installation 6
2.1 Location Diagram 6
2.2 DIP Switch Setting 7
2.3 Jumper Setting 8
2.4 Connector Pin Assignment 9
2.5 Module Installation 11
2.6 Register Description 12
2.7 Programming 13
2.8 Block Diagram 14
Appendix A: PC I/O Port Mapping 15
Appendix B: Summary of Interrupt Levels 16
Appendix C: PC/104 Mechanical Specifications 17

1.1
 General Description

The NC-930 opto-isolated input PC/104 module is designed for monitoring digital input status. It provides 16 channels of input to detect ON/OFF, OPEN/CLOSE signals and has interrupt capability on its first channel. The input range is from 5 V to 24 V which is suitable for many applications. Also, the isolation voltage is up to 1 KVrms from the input end to the host. This feature allows voltage spikes that often occur in harsh industrial environments to be safely isolated from the computer.

$1.2 \quad$ Features

- $\quad 16$ channels opto-isolated input
- Isolation up to 1 KVrms
- \quad Filter circuit included
- Wide input range

1.3 Applications

- Industrial ON/OFF monitoring
- Limit switch monitoring
- Valve/Solenoid monitoring

1.4 Specifications

Input

Opto-isolator
Number of Channels
Voltage Range
Current Limit Resistor
Max Current

Connector

Power Requirements

$+5 \mathrm{VDC}$

Physical/Environmental

Dimensions	95 mm X 90 mm
W eight	80 g
Operating Temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Storage Temperature	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Relative Humidity	0% to 90%, non-condensing

2.1
 Location Diagram

Refer to the following location diagram for help in locating components needed during installation of the NC-930 module.

NC-930

2.2 DIP Switch Setting

NC-930 occupies four consecutive I/O port spaces. The I/O port addresses are set via a DIP switch labeled SW 1 . Set the DIP switch to the correct address to avoid device conflicts. Valid addresses range from 200 Hex to $3 F 8$ Hex. The following figure is the default setting, 300 Hz .

BASE ADDRESS SWITCH SETTING

Base Address $=512+256=768$ (Decimal) $=300$ (Hexadecimal)

I/O Port Range	DIP Switch Position							
Hexadecimal	1	2	3	4	5	6	7	8
	A9	A8	A7	A6	A5	A4	A3	A2
$200-203$	1	0	0	0	0	0	0	0
$204-207$	1	0	0	0	0	0	0	1
$208-20 B$	1	0	0	0	0	0	1	0
$20 C-20 F$	1	0	0	0	0	0	1	1
$220-223$	1	0	0	0	1	0	0	0
*300-303	1	1	0	0	0	0	0	0
3F8-3FB	1	1	1	1	1	1	1	0
3FC -3FF	1	1	1	1	1	1	1	1

$0=O N, 1=O F F$

* $=$ FACTORY DEFAULT SETTING

NC-930

2.3 Jumper Setting

JP1-JP8: These are filter control jumpers used to enable or disable channel 0 through channel 7 filters. If jumper cap is installed, the filter is turned on when the $3-\mathrm{dB}$ frequency is at about 50 Hz .

Channel	0	1	2	3	4	5	6	7
Corresponding Jumper	JP1	JP2	JP3	JP4	JP5	JP6	JP7	JP8

JP9-JP16: These are filter control jumpers used to enable or disable channel 8 through 15 filters. If jumper cap is installed, the filter is turned on when the 3-dB frequency is at about 50 Hz .

Channel	8	9	10	11	12	13	14	15
Corresponding Jumper	JP9	JP10	JP11	JP12	JP13	JP14	JP15	JP16

JP18-JP23: These are interrupt request output selection jumpers. The following table shows jumper cap position versus IRQ channel relationship. Note that only channel 0 has interrupt capability.

| JP18 - JP23 |
| :---: | :---: |
| Jumper Cap Position | Description

NC-930

2.4 Connector Pin Assignment

JP1

NAME	PIN	NAME	
DIO	1	2	DI8
-DIO	3	4	-DI8
GND	5	6	GND
DI1	7	8	DI9
-DI1	9	10	-DI9
GND	11	12	GND
DI2	13	14	DI10
-DI2	15	16	-DI10
GND	17	18	GND
DI3	19	20	DI11
-DI3	21	22	-DI11
GND	23	24	GND
DI4	25	26	DI12
-DI4	27	28	-DI12
GND	29	30	GND
DI5	31	32	DI13
-DI5	33	34	-DI13
GND	35	36	GND
DI6	37	38	DI14
-DI6	39	40	-DI14
GND	41	42	GND
DI7	43	44	DI15
-DI7	45	46	-DI15
+12V	47	48	$+12 V$
+12V	49	50	+12V

PIN	SIGNAL NAME	DESCRIPTION
$\begin{aligned} & 1,7,13,19,25 \\ & 31,37,43 \end{aligned}$	DIO to DI7	The lower eight positive digital input channels. These pins are labeled as positive.
$\begin{aligned} & 3,9,15,21,27, \\ & 33,39,45 \end{aligned}$	-DIO to -DI7	The lower eight negative digital input channels. These pins are labeled as negative.
$\begin{aligned} & 2,8,14,20,26, \\ & 32,38,44 \end{aligned}$	DI8 to DI15	The upper eight positive digital input channels. These pins are labeled as positive.
$\begin{aligned} & 4,10,16,22,28, \\ & 34,40,46 \end{aligned}$	-DI8 to -DI15	The upper eight negative digital input channels. These pins are labeled as negative.
47, 48, 49, 50	+12V	+12V PC bus power
$\begin{aligned} & 5,6,11,12,17 \\ & 18,23,24,29 \\ & 30,35,36,41,42 \end{aligned}$	GND	PC ground

NOTE: Exercise caution when using the +12 V power as it is direct from the PC bus. It is suggested that an external power source be used for data safety reasons.

NC-930

2.5 Module Installation

The NC-930 PC/104 module is shipped with an electrostatically protective cover. When unpacking, touch the electrostatically shielded packaging to a metal surface to discharge any accumulated static electricity prior to touching the module.

The following description summarizes the procedure for installing the NC-930.

WARNING

TURN OFF the PC and all accessories connected to the PC whenever installing or removing any peripheral board including the NC-930 module.

Installation procedures:

1. Turn off the system power.
2. Unplug all power cords.
3. Remove the case cover if necessary.
4. Remove the top module if it is a non-stackthrough module.
5. Put the NC-930 module in line with top present module as described in PC/104 Mechanical Specification.
6. Install four spacers if necessary.
7. Connect cable if necessary.
8. Press the modules together until the inside distance is SPACER'S height (0.6"). Restore all the screws.
9. Repeat steps 6-8 until all modules are set into position.
10. Connect cable to NC-930 if necessary.
11. Replace the case cover and reconnect all necessary cables.
12. Turn on the system power.

2.6 Register Description

I/O Map

The NC-930 occupies 4 consecutive addresses in I/O address space, but only two of the I/O addresses are actually used. The 16 individually opto-isolated inputs are read as two bytes of data.

The following tables show the two 8-bit digital input registers:

Base Address +0

Bit Number	7	6	5	4	3	2	1	0
Digital Input	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DIO

This is a read-only register for the lower digital input byte data. The write action will not have any effect.

Base Address +1

Bit Number	7	6	5	4	3	2	1	0
Digital Input	DI15	DI14	DI13	DI12	DI11	DI10	DI9	DI8

This is a read-only register for the higher digital input byte data. The write action will not have any effect.

2.7 Programming

Programming the NC-930 is very simple. It can be easily accomplished using direct I/O instructions from various application languages. In this section an example in BASIC is given.

Assuming the base address is 300 Hex , the programming is as follows:

$$
\text { BASE }=\& 300
$$

X1\% = INP (BASE)

IF X1\%\&1 THEN PRINT "Channel 0 is ON" ELSE PRINT "Channel 0 is OFF"
X2\% = INP (BASE + 1)
IF X2\%\&1 THEN PRINT "Channel 8 is on" ELSE PRINT "Channel 8 is OFF"

WIRING: This is the simplest way to detect whether a switch is open or closed.

Block Diagram

Appendix A: PC I/O Port Mapping

I/O Port Address Range
$000-1 F F$
$200-20 F$
$278-27 F$
$2 E 1$
$2 F 8-2 F F$
$320-32 F$
$378-37 F$
$380-38 F$
$3 B 0-3 B F$
$3 C 0-3 C F$
$3 D 0-3 D F$
$3 F 0-3 F 7$
$3 F 8-3 F F$

Function

PC reserved
Game controller (joystick)
Second parallel printer port (LPT 2)
GPIB controller

Second serial port (COM 2)

Fixed disk (XT)
Primary parallel printer port (LPT 1)
SDLC communication port

Monochrome adapter/printer
EGA, reserved

Color/graphics adapter
Floppy disk controller
Primary Serial port (COM 1)

Appendix B: Summary of Interrupt Levels

Interrupt level	Usage
NM1	Parity, AT Channel Check
IRQ0	Interval Timer 1, Counter 0 OUT
IRQ1	Keyboard Controller
IRQ2	Reserved (XT)
IRQ3	Cascade Interrupts from IRQ8 to IRQ15 (AT)
IRQ4	Serial Port \#2
IRQ5	Serial Port \#1
	Hard Disk (XT)
IRQ6	Parallel Port \#2 (AT)
IRQ7	Floppy Disk
IRQ8	Parallel Port \#1
IRQ9	Real Time Clock (AT)
IRQ10	Redirected to IRQ2 (AT)
IRQ11	Unassigned
IRQ12	Unassigned
IRQ13	Unassigned
IRQ14	Coprocessor Error
IRQ15	Hard Disk
	Unassigned

NC-930

Appendix C: PC/104 Mechanical Specifications

PC/104 General Description

While the PC and PC/AT architectures have become extremely popular in both general purpose (desktop) and dedicated (non-desktop) applications, their use in embedded microcomputer applications have been limited due to the large sizes of standard PC and PC/AT motherboards and expansion cards. PC/104 modules can be of two bus types, 8 bit and 16 bit, which correspond to the PC and PC/AT busses respectively.

Besides bus options, there are stackthrough and non-stackthrough differences. The stackthrough version provides a self-stacking PC bus. It can be placed anywhere in a multi-module stack. The non-stackthrough version offers minimum thickness by omitting bus stackthrough pins. It must be positioned at one end of a stack.

For convenience, the NC-930 is equipped as a stackthrough version only.

